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Lúıs Paquete1 and Thomas Stützle2
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Abstract

Stochastic local search (SLS) algorithms are typically composed of a
number of different components, each of which should contribute signifi-
cantly to the final algorithm’s performance. If the goal is to design and
engineer effective SLS algorithms, the algorithm developer requires some
insight into the importance and the behavior of possible algorithmic com-
ponents. In this paper, we analyze algorithmic components of stochastic
local search algorithms for the multiobjective travelling salesman problem.
The analysis is done using a careful experimental design for a generic class
of SLS algorithms for multiobjective combinatorial optimization. Based
on the insights gained, we engineer SLS algorithms for this problem. Ex-
perimental results show that these SLS algorithms, despite their concep-
tual simplicity, outperform a well-known memetic algorithm for a range
of benchmark instances with two and three objectives.

1 Introduction

Stochastic local search (SLS) algorithms are among the most successful tech-
niques for tackling computationally hard problems [19]. In recent years, they
have become very popular also for tackling multiobjective combinatorial opti-
mization problems (MCOPs) [8, 36]. The currently best performing SLS algo-
rithms for MCOPs typically involve a number of different algorithmic compo-
nents that are combined into a more complex algorithm. An algorithm developer
should therefore have some form of insights into the importance of these algo-
rithmic components and know how they interact with different types of possible
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problem characteristics with respect to performance. Ideally, such insights are
first gained to make the SLS algorithm design more informed and directed.

In this paper, we present an in-depth experimental analysis of SLS algo-
rithms for the multiobjective traveling salesman problem (MTSP), a paradig-
matic NP-hard MCOP. Our analysis is based on a sound experimental design
that investigates some usual algorithmic components that can be found in a
general algorithmic framework for tackling MCOPs, the scalarized acceptance
criterion (SAC) search model [36]. The SAC search model mimics local search
approaches that are based on the scalarization of the multiple objective func-
tions into a single one; many such scalarizations are then tackled using local
search (or exact algorithms, if the scalarized problems are efficiently solvable by
such algorithms) and the resulting approximate solutions are possibly further
treated. Essential components of algorithms following the SAC search model
are the number of scalarizations used, the search strategy followed (for exam-
ple, whether information between various scalarizations is exchanged or not),
the computation time invested for tackling each of the resulting single objective
problems, and various others. In fact, such a decomposition of an algorithm
into its components allows to employ an experimental design perspective for
the analysis of the performance of SLS algorithms: algorithmic components are
seen as factors, that is, as abstract characteristics of an SLS algorithm that can
affect the response variables such as solution quality. Designing the experiments
in a careful way and analyzing them by methods from experimental design al-
lows then to arrive at statistically sound conclusions on the importance of these
components and their mutual interdependencies.

While there exist few researches where experimental designs have been used
to analyze SLS algorithms for optimization problems with a single objective
[40, 47], the usage of experimental designs for analyzing SLS algorithms for
MCOPs is rather recent [34, 38]. One reason for this is certainly that the
analysis of the outcomes of algorithms for MCOPs are difficult to compare. In
fact, fundamental criticisms have been raised against the usage of many unary
and binary performance measures for multiobjective optimizers [48], which also
makes it difficult, if not virtually impossible, to apply the classical ANOVA-type
analysis for comparing approximations to the efficient set. Instead, we employ
a sound methodology that follows three steps. In a first step, the outcomes of
algorithms are compared pairwise with respect to outperformance relations [17];
if these comparisons do not yield clear conclusions, we compute in a next step the
attainment functions to detect significant differences between sets of outcomes
[11, 42]. If such differences are detected, the usage of graphical illustrations is
used in a third step to examine the areas in the objective space where the results
of two algorithms differ [30].

Our experimental analysis allows a clear identification of the key-success
components from the experimental design. For instance, the results obtained
indicate the two-phase search strategy and the component-wise step proposed in
[35] as two component levels that yield a significant improvement with respect
to solution quality. In addition, the experimental analysis gives insights into
the behavior of specific components such as the effectiveness of increasing either
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the number of scalarizations or the search length.
There is yet another aspect that makes the analysis through the lens of ex-

perimental design useful: The insights gained by such an in-depth analysis can
be exploited to define new high-performing algorithms or at least indicate di-
rections into which existing algorithms should be extended. Hence, the insights
gained from the experimental analysis allow to yield conclusions useful towards
the design and engineering of successful SLS algorithms. In fact, based on our
experimental analysis, we define SLS algorithms that are assembled from the
most promising levels of components we have identified; still, these algorithms
remain conceptually rather simple. An extensive experimental comparison of
these SLS algorithms on the MTSP with two and three objectives to a well-
known state-of-the-art algorithm for the MTSP shows that it is very competitive
or often superior.

The article is structured as follows. In section 2, we introduce basic notions
on MCOPs and the MTSP. Section 3 introduces the SAC model and explains
the particular components of these SLS algorithms studied in our experiments.
Next, in section 4, we give an overview of the experimental design, the method-
ology that was used for comparing the performance of the algorithms and we
describe the experimental results obtained. Finally, in section 5, we compare the
performance of our SLS algorithms to a well-known state-of-the-art algorithm.
We conclude in section 6.

2 Multiobjective Optimization and the MTSP

The main goal of solving MCOPs in terms of Pareto optimality is to find (all)
feasible solutions that are not worse than any other solution and strictly better
in at least one objective. The objective function vector for a solution s ∈ S to
an MCOP can be defined as a mapping f : s 7→ RQ, where Q is the number
of objectives and S the set of all feasible solutions. The following order holds
for objective function vectors in RQ. Let u and v be vectors in RQ; we define
the component-wise order as u ≤ v, i.e., u 6= v and ui ≤ vi, i = 1, . . . , Q. In
optimization, we say (i) f(s) dominates f(s′) if f(s) ≤ f(s′); (ii) f(s) and f(s′)
are non-dominated if f(s) 6≤ f(s′) and f(s′) 6≤ f(s). We use the same notation
and wording among solutions if these relations hold between their objective
function vectors.

A solution s ∈ S is said to be a Pareto global optimum solution if and only
if there is no s′ ∈ S such that f(s′) ≤ f(s). There may be more than one
Pareto global optimum solution; a Pareto global optimum set is the set S′ ⊆ S
that contains only and all Pareto global optimum solutions. We call the image
of the Pareto global optimum set in the objective space the efficient set. In
most cases, solving an MCOP in terms of Pareto optimality would correspond
to finding solutions that are representative of the efficient set.

The optimization problem handled in this study is the multiobjective trav-
eling salesman problem (MTSP), which is defined as follows: Given Q, a set C
of n cities, and distance vectors d(ci, cj) ∈ NQ for each pair of cities ci, cj ∈ C,
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the goal is to find a tour in C, that is, a permutation π : [1..n] → [1..n], such
that the length of the tour, that is,

f(π) = d
(
{cπ(n), cπ(1)}

)
+

n−1∑
i=1

d
(
{cπ(i), cπ(i+1)}

)
is “minimal”. In this paper, “minimal” is understood in terms of Pareto opti-
mality. The MTSP is known to be NP-hard [41]; additionally, it is known that
the lower bound on the expected size of the efficient set for the MTSP is an
exponential function of the instance size [9].

The MTSP was chosen for three main reasons. Firstly, its single objective
counterpart, the traveling salesman problem (TSP), is one of the best studied
NP-hard combinatorial optimization problems and it has been intensively used
as a test-bed for experimenting new algorithmic ideas [25], including many SLS
algorithms. Hence, experimental results obtained for the multiobjective version
may also be interpreted in light of the experience on the performance of these
techniques for the single objective case. Secondly, despite the fact that the
small instances of the single-objective TSP can be solved in a few seconds to
optimality by exact algorithms such as the concorde solver (http://www.tsp.
gatech.edu/concorde), there are two facts that limit their use under fixed
time constraints: the typically large variability in the computation times and
the potentially very large number of solutions in the efficient set [9]. Thirdly,
significant research efforts have been targeted towards applying SLS algorithms
to this problem and it has been studied from several different perspectives: from
an approximation [1, 7], local search [2, 16, 23], theoretical [9], and experimental
[4] point of view; some related problems have been studied in [27, 43].

3 The Search Model and Algorithmic Compo-
nents

A large number of SLS algorithms have been proposed for MCOPs. Many of
these algorithms can be classified as following one of two main search models,
the scalarized acceptance criterion (SAC) and the component-wise acceptance
criterion search (CWAC) search model, or some hybrid thereof [36]. In this
article, we analyse the influence of generic components that together mimic the
underlying search principles of the SAC search model. (An analysis of generic
components of the CWAC search model can be found in [33]; the algorithms
following the CWAC model were found to be inferior to those of the SAC model
and, hence, here we present only the analysis concerning the more successful
model.) Essentially, the SAC search model comprises approaches that use the
value returned for solving a scalarization of the objectives for deciding upon the
quality of solutions. For a reasonable approximation to the efficient set, it is
well-known that it is necessary to solve a number of such scalarizations.

As one representative of the SAC search model, we examine the straight-
forward approach that uses several scalarizations of the objective function vector
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and tackles these with an underlying algorithm for the resulting single objective
problem, an approach which underlies many earlier proposed algorithms [6, 13,
17, 23, 46]. We follow the well-known principle of defining scalarizations of the
objective function vector with respect to a weighted sum. Hence, the scalarized
(single) objective function is defined as

fλ(s) =
Q∑

q=1

λqfq(s), (1)

where λ = (λ1, . . . , λQ) is a weight vector. Typically, λ is normalized such that
its components sum to one. We follow this convention and each λ we use is an
element from the set of normalized weight vectors Λ given by

Λ = {λ ∈ RQ : λq > 0,

Q∑
q=1

λq = 1, q = 1, . . . , Q}. (2)

Algorithms following the SAC model then solve a number of scalarized prob-
lems that are obtained by different weight vectors. The resulting scalarized
problems could be solved by any algorithm for the resulting single-objective
version; in our case, we apply an effective SLS algorithm for the TSP, which is
described later in more detail. In the following subsections, we describe several
algorithmic components for the SAC model that are analyzed in this article.
For each component at least two and at most three levels are studied in the
experimental design; although for several components more options would be
possible and interesting, the number of levels was kept restricted to limit the
exponential increase of the number of experiments.

3.1 Component: Search strategy

The search strategy determines the series of scalarized problems that are defined
and tackled. In particular, this concerns the strategy for defining the sequence of
weight vectors and how information is transferred from one scalarized problem
to another one. We consider two different search strategies.

Restart strategy. The probably most straightforward strategy is to use dif-
ferent weight vectors and to not transfer the results from one scalarized problem
to another one. Such as strategy is obtained, for example, by starting the search
process for each scalarization from a random initial solution (or, alternatively,
by some known construction heuristic that does not use information from pre-
vious runs). We call this approach the Restart strategy and its pseudo-code
is given in Algorithm 1; it results in multiple, independent runs of the single
objective SLS algorithm. The procedure SLS at the third line is the underlying
SLS algorithm that tackles the problems obtained by weight vector λi. Since
A could have dominated solutions at step 5, only the non-weakly dominated
solutions are kept; this is implemented by the sub-procedure Filter.
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Algorithm 1 Restart search strategy
for all weight vectors λ ∈ Λ do

s is a randomly generated solution
s′ = SLS(s, λ)
Add s′ to Archive

Filter Archive
return Archive

A set of m weight vectors is used by the Restart strategy. Here, we assume
that each component of the weight vector has a value i/z, i = 0, . . . , z, where
z is a parameter, and the sum of the components is equal to one, as required
by Equation 2. Since this set of weight vectors can be seen as the set of all
compositions of z in Q parts, we have that m =

(
z+Q−1

Q−1

)
.

2phase strategy. A different possibility is to transfer results from one scalar-
ization to another one. Here, we adopt the 2phase strategy, which was proposed
in [35]. In a first phase, a high quality solution for one objective is generated.
This solution is the starting solution for the second phase that solves a sequence
of scalarizations of the objective function vector. In this sequence, the initial
solution for a scalarization i is the one that is returned from the previous scalar-
ization i − 1; the first scalarization of the second phase is initialized with the
solution returned from the first phase. A pseudo-code of the 2phase search
strategy is shown in Algorithm 2. Note that the first and the second phase may
make use of two distinct SLS algorithms, which is indicated in Algorithm 2 by
SLS1 and SLS2.

Concerning the definition of the sequence of weight vectors that define each
scalarization, several strategies may be followed. Here, we adopt a minimal
change strategy between two successive weight vectors to define this sequence.
It can be built for two objectives by generating m = z weight vectors such
that λi = (1 − i/z, i/z), i = 1, . . . ,m, if the first objective is the one that
is optimized in the first phase. For more than two objectives, we define this
sequence such that two successive weight vectors differ only by ±1/z in any two
components. Thus, a minimal change is incurred between components of two
successive weight vectors generalizing the biobjective case. To generate such a
sequence, an algorithm for generating compositions of z into Q parts can be
used. In our particular case, we need a combinatorial Gray code for this task,
which can be generated by the Gray code for compositions [28].

Finally, one may run the 2phase strategy considering different orders of the
objectives. One possibility would be to run it once for each permutation of the
Q objectives, that is, Q! times. Computationally less expensive is to consider
only the combinations of each pair of objectives, totalizing

(
Q
2

)
runs, or to apply

just one run for each objective.
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Algorithm 2 2phase search strategy
s is a randomly generated solution
s′ = SLS1(s) /* First phase */
for all weight vectors λ ∈ Λ do

s = s′

s′ = SLS2(s, λ) /* Second phase */
Add s′ to Archive

Filter Archive
return Archive

3.2 Component: Number of Scalarizations

The number of scalarizations is defined by the parameter z. It is expected that
an increase of the number of scalarizations would increase also the number of
different (non-dominated) solutions returned. However, how much the number
of solutions grows when increasing the number of scalarizations is not clear
in advance. Therefore, we consider the number of scalarizations as a numerical
parameter, that is, also as an algorithmic component, whose influence is studied
in the experimental part.

3.3 Component: Neighborhood structure

In our analysis, we study two main components of the underlying SLS algorithm.
Both are related to the quality of the solutions it returns. The first component
is the neighborhood structure that is used; it identifies which solutions are
neighbored and it has a significant influence on the performance of local search
algorithms. The typical trade-off is that the larger the neighborhood, the better
quality are the solutions that are found by, for example, iterative improvement
algorithms; however, with the neighborhood size also increases the computation
time that is required to find improving neighbors and, in the case of iterative
improvement, a local optimum.

3.4 Component: Search length

The second component of the underlying SLS algorithm we study is the number
of iterations this algorithm is run. The reason for studying this component is
that by increasing the number of iterations, the final solution quality returned
by the SLS algorithm tends to increase, but at the same time does also the
computation time. In other words, there is a trade-off between these two cri-
teria and a good compromise needs to be found for the design of an algorithm
following the SAC model.

3.5 Component: Component-wise Step

The number of solutions returned is bounded by the number of compositions of
z in Q parts. One possibility for increasing this number is by accepting, for each
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scalarization, non-dominated solutions in the neighborhood of the solution re-
turned by the underlying single-objective SLS algorithm. We call this additional
component component-wise step, which was also used in [35]. In our particu-
lar case, this step uses the neighborhood that is defined by the neighborhood
component.

y

4 Experimental Analysis

4.1 Experimental design

The experimental design studied all the five algorithm factors that were de-
scribed in the previous section plus two factors concerning the MTSP instances,
namely the instance type and the instance size.

4.1.1 MTSP instances

For the experimental part of the study, we have generated MTSP instances of
different size and using different ways to generate the distances between the
nodes. We used the random instance generator available from the 8th DIMACS
Implementation Challenge site1 and for each objective, one instance matrix was
generated. We consider only two objectives for the experimental analysis of
the algorithm components, while the comparison with a state-of-the-art SLS
algorithm for the MTSP includes also instances with three objectives. Three
types of biobjective instances were generated.2

• Random Uniform Euclidean (RUE) instances, where each component of
the distance vector assigned to an edge is generated as usual in RUE
instances: each distance value corresponds to the Euclidean distance be-
tween two points in a two-dimensional plane rounded to the next integer;
the coordinates of each point are integers that are uniformly and indepen-
dently generated in the range [0, 3163].

• Random distance matrix (RDM) instances, where each component of the
distance vector assigned to an edge is chosen as an integer value taken
from a uniform distribution in the range [0, 4473].

• Mixed instances, where one objective assigns distances to the edges as in
RUE instances while the other assigns distances as in RDM instances.

The range of edge lengths for the RUE instances was chosen in order to meet
the range of values of the Krolak/Felts/Nelson instances available in TSPLIB
(files with prefix kro). The range of the edge lengths for the RDM instances and
the RDM objective of the mixed instances were chosen in order to have a range
similar to the one of the RUE instances (note that b

√
2 · 31632 + 0.5c = 4473).

1The generator is available at http://www.research.att.com/∼dsj/chtsp/download.
2The instances are available at http://eden.dei.uc.pt/∼paquete/tsp/.
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Components Levels
Search Strategy {Restart, 2phase}
Number of scalarizations {n, 5n, 10n}
Neighborhood structure {2-exchange, 3-exchange}
Search length {0, 50, 100 }
Component-wise step {True, False }

Table 1: List of algorithmic components and the corresponding levels that we
considered for our experimental setup.

The instance sizes considered were n ∈ {100, 300, 500}. Thus, the instances we
tackle are larger than most that are considered in the literature, where mainly
experimental results are available for instances with less than 300 cities. For
each instance size and type of instance, three instances were generated, resulting
in a total of 27 instances.

4.1.2 Algorithmic component levels

For each of the factors concerning algorithmic components, two or three levels
have been studied. A summary of the components and their associated levels
studied is given in Table 1. Necessary details on the components are explained
next.

Search strategy. If the search strategy 2phase is chosen, the first phase will
optimize the first objective and the solution returned is also the starting solution
for the second phase. For RUE and RDM instances, the first phase of 2phase
consisted in running an iterated local search (ILS) algorithm, which is described
below in some more detail, for 50 iterations only for the first objective; this
resulted in a high quality solution for the single objective case. For the mixed
instances, we considered two variants of the 2phase strategy: 2phaseE starts
the first phase optimizing only the objective defined by the Euclidean distance
matrix; 2phaseR starts optimizing the objective defined by the RDM distance
matrix. Using these two versions of the 2phase strategy, we can thus also
analyze the dependence of the final performance on the structure of the objective
that is used for generating the initial solution for the second phase. Since in
the mixed instances the solutions found in the efficient set had a lower range
of objective function values for the RUE objective than for the RDM objective
(despite the fact that we tried to equalize the range of the edge weights), we
equalized the ranges of both objectives by multiplying the ith component of the
objective function value vector by a range equalization factor Fi [44] that for
each objective i is

Fi =
Ri∑Q

j=1 Rj

,
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where Q is the number of objectives and Ri is the range of objective function
values for the objective i. We computed an approximation to the range of the
efficient set as follows. First, we run an iterated local search (ILS) algorithm
[45] 10 times for each objective; then, given the best solutions to the first and
the second objective, s1 and s2, respectively, the ranges are computed as R1 =
f1(s2)− f1(s1) for the first objective and as R2 = f2(s1)− f2(s2) for the second
objective.

Number of scalarizations. For the number of scalarizations, three levels
have been studied, n, 5n, and 10n, where n is the number of cities in the MTSP
instance.

Neighborhood structure. We consider two standard TSP neighborhood
structures, the 2- and 3-exchange neighborhoods. (In general, two solutions
are neighbored in the k-exchange neighborhood if they differ by at most k edges.)
The iterative improvement algorithms we use for each scalarization make use of
the usual TSP speed-up techniques and measure whether a neighboring solution
improves over a current one using the weighted sum of the objectives. Clearly,
one could also use more complex neighborhood structures like the ones used in
the Lin-Kernighan local search algorithms [29]; however, we restricted to the 2-
and 3-exchange neighborhoods for the sake of limiting the exponential increase
of the number of configurations with the number of levels.

Search length. On top of the resulting two iterative improvement algorithms,
we used an iterated local search (ILS) method [31]. The usage of a general-
purpose SLS method allows to set larger search lengths and in this way to
intensify the search for each scalarization. (In fact, the ILS method forms the
basis for most high-performing SLS algorithms for the TSP.) An algorithmic
outline of ILS is given in Algorithm 3. The perturbation used in the ILS algo-
rithm is a random double-bridge move and the acceptance criterion accepts a
new solution only if it improves over the previous one. For the ILS algorithm,
we have used the code provided at http://www.sls-book.net/. Since the ILS
algorithm uses the iterative improvement algorithm as its subsidiary local search
procedure, the application of the iterative improvement algorithm corresponds
to “zero iterations” of the ILS algorithm. Hence, the three different levels of the
search length component can be indicated as 0, 50, and 100 iterations of ILS,
respectively, which we denote in the following as ILS(0), ILS(50), and ILS(100).

Component-wise step. The effect of the component-wise step was explicitely
analyzed only for instance size 100; in fact, on all instance sizes the component-
wise step has a (strongly) positive effect and, hence, we simply used it on the
large instances always. This has the side-advantage of reducing the number of
experiments on the instances of size 300 and 500 by a factor of two and, thus,
saving significant computational effort.
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Algorithm 3 Iterated Local Search. Algorithmic outline of an iterated local
search algorithm as used in the experimental setting. no iterations is a pa-
rameter that defines the number of times the main loop of the algorithm is
executed. If no iterations = 0, the algorithm corresponds to a single applica-
tion of iterative improvement.

input: s0, an initial solution
input: no iterations; number of iterations of main loop
s∗ := IterativeImprovement(s0)
for i := 1 to no iterations do do

s′ := Perturbation(s∗)
s∗′ := IterativeImprovement(s′)
s∗ := AcceptanceCriterion(s∗, s∗′)

return s∗

4.2 Performance Assessment Methodology

Assessing the performance of algorithms for MCOPs is by far more complex
than in the single-objective case and a number of serious problems, in particular
of unary performance indicators, have been described [48]. Our experimental
analysis is based on a three step evaluation that avoids these known drawbacks.
In a first step we use the better relations, which provide the most basic assertion
of performance; the second step computes attainment functions and tests the
equality of the attainment functions [15]; the third step consists in detecting
the largest differences of performance in the objective space between pairs of
algorithms. Most aspects of this three-step experimental analysis were described
in [34, 30] and are here summarized for the sake of comprehensibility of the
remainder of the paper.

Step 1: Better Relations

A set of points A is better than a set of points B if every point of B is dominated
or equal to any point of A. This relation was introduced in [17] as one of the
outperformance relations that can be established between pairs of outcomes of
SLS algorithms for MCOPs. Thus, as a first step, we count how many times
each outcome associated to each level of a component is better than the ones
from another level of the same component. However, we restrict the compar-
ison of outcomes to those that were produced within the same levels of other
components in order to reduce variability. This allows us to detect if some level
is clearly responsible for a good or bad performance. If no clear answers are
obtained from this first step, we can conclude that the outcomes are mostly
incomparable, that is, neither A is better than B nor vice versa. Since then
we do not know to what extent they really differ, we test the equality of their
attainment functions.

11
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Step 2: Attainment Functions

In Fonseca and Fleming [11], the performance of an SLS algorithm for multi-
objective problems is associated to the probability of attaining (dominating or
being equal to) an arbitrary point in the objective space in one single run. This
function is called attainment function in [15] and it can be seen as a generaliza-
tion of the distribution function of solution cost [19] to the multiobjective case.
These probabilities can be estimated empirically from the outcomes obtained in
several runs of an SLS algorithm by the empirical attainment function (EAF).
Then, we can formulate statistical hypotheses and test them based on the EAFs
of several algorithms for a certain problem instance. A suitable test statistic for
the comparison of two algorithms is the maximum absolute distance between
their corresponding EAFs, analogous to the Kolmogorov–Smirnov statistic [5].
For the case of k > 2 algorithms, we choose the maximum absolute distance
between the k EAFs, analogous to the Birnbaum–Hall test [5]; if the global
null hypothesis of equality is rejected, we test the equality between each pair
of EAFs, where the p-values are corrected by Holm’s procedure [20]. Since the
distribution of these test statistics is not known, permutation tests [14] based on
the above test statistics have to be performed [42]. The permutation procedure
has to be changed according to the experimental design chosen. For instance,
in the presence of several factors, restricted randomizations [14], as done in [34]
in a similar context, can be applied; for testing the main effects of each com-
ponent, we allow permutations of the outcomes between different levels of the
component of interest, but within the same levels of the other components.

Step 3: Location of Differences

If the previous analysis indicates that the null hypothesis of equality of the
attainment functions should be rejected, the largest performance differences can
be visualized by plotting the points in the objective space with a large absolute
difference of the EAFs. In fact, large has a subjective meaning; here, we plot
the points whose absolute differences were above or equal to 20%, assuming
that lower values are negligible.3 Since the sign of the difference at each point
gives information about which algorithm performed better at that point, we may
plot positive and negative differences separately, if differences in both directions
exist.

Figure 2 on page 15 illustrates the main idea. Each of the two plots give the
differences of the EAFs associated to two algorithms that were run several times
on one instance. The lower line on each plot is a lower bound on the efficient
set,4 while the upper line connects the set of points attained by all runs of both

3The minimum number of outcomes that were used for statistical tests in this thesis were
10 (5 runs associated to each level of a factor); thus, a difference of 20% corresponds also to
the minimum difference that can be observed in these comparisons.

4The lower bound is used simply as a visual reference when plotting the differences with
respect to the empirical attainment functions. We use a lower bound based on the solution
of the 2-matching problem; it yields a lower bound approximately at 14% of the optimum
for the TSP [39]. (Note that better quality lower bounds exist, but this is for our purposes

12



www.manaraa.com

algorithms. On both plots are shown the regions where the EAF of Algorithm
1 (using 2phase strategy) is larger by at least 20% than that of Algorithm 2
(using Restart strategy); the observed differences are encoded using a grey
scale–the darker the stronger are the differences. In this case, no point in the
EAF of Algorithm 2 was larger than the corresponding one of Algorithm 1. If
differences in favor of each of the algorithms occur, the positive differences in
favor of each algorithm can be plotted side-by-side, as it is done in Figure 1 on
page 14.

4.3 Experimental Results

Each configuration resulting from any of the possible combinations of levels
of the factors, as described in Section 4.1, was run five times on an AMD
Athlon(TM) 1.2 GHz CPU, 512 MB of RAM under Suse Linux 7.3. We have
permuted randomly the original order of the runs to remove a possible bias.
In the following, we discuss the results of the analysis for each SLS component
under study. Each permutation test for testing hypotheses on the equality of
EAFs used 10 000 permutations and the significance level was set to α = 0.05.
Due to space restrictions, we only show the most relevant plots of the locations
of the differences as explained in Section 4.2; a full collection of the results
comprising all the data on the comparisons and all plots is available at http:
//eden.dei.uc.pt/∼paquete/mtsp.5

4.3.1 Component: Search Strategy

The results in Table 2 with respect to the better relations indicate that the
2phase strategy performs slightly better than the Restart strategy for larger
instances and that the difference is more relevant on RDM instances. In addi-
tion, the null hypothesis of equality of the EAFs was always rejected. Hence, the
search strategies behave statistically different with respect to the corresponding
EAFs in the instances tested.

Figures 1 and 2 indicate the location of differences above 20% between the
search strategies. The two plots of Figure 1 indicate that the Restart strategy
covers a wider part of the trade-off than the 2phase strategy on the RUE in-
stances of size 100, though with only a small difference (which is reflected by the
fact that the differences are almost imperceptible); the latter performs better
only towards the first objective, where the first phase terminated. However, as
instance size increases in RUE instances and RDM, the 2phase strategy per-
forms clearly better than the Restart strategy, as shown in the plots of Figure 2.

not important.) For our particular case, we solved the 2-matching problem using as input
a matrix resulting from the weighted sum of distances assigned to each edge of an MTSP
instance. This procedure is repeated for 5 000 maximally dispersed weight vectors and the
lower bounds have been computed using CPLEX.

5Note that the computation of all the experimental results including the execution of the
hypothesis tests took more than half a CPU year; in fact, the exponential increase of the
number of experiments was one reason for limiting the experiments to a small number of
levels for each factor.
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Figure 1: Location of differences between the 2phase and the Restart search
strategy in favor of the former (left) and in favor of latter (right), for RUE
instances of size 100. Note that the differences between the two strategies in
this case are all minor, that is, in the range of [0.2, 0.4[, and are therefore almost
imperceptible.

Finally, the comparisons on the mixed instances have shown interesting ten-
dences: When comparing 2phaseE and 2phaseR, each has advantages towards
the objective that is optimized in the first phase and the observed differences
between the two are roughly the same across the various instance sizes. Differ-
ences in favor of the Restart search strategy for instance size 100 are located
in the center of the trade-off; however, on larger instances, no differences above
20% in favor of the Restart strategy were found.

4.3.2 Component: Component-wise Step

The comparison based on the better relation with respect to the use or not of
the component-wise step always resulted in incomparable cases, but the null
hypothesis with respect to the equality of EAFs was always rejected. Hence,
there are always significant differences between using or not the component-
wise step. The location of differences above 20% clearly indicates that the use
of this step yields a significant advantage, as shown in the left plot of Figure 3.
However, this advantage is not constant over all types of instances tested: the
differences are stronger for RUE instances than for RDM instances. In addition,
the differences for mixed instances lie more towards the Euclidean objective.

Concerning the computation time, it is remarkable that the addition of the
component-wise step increases the computation time by only about 1%, which
is negligible in most applications. Furthermore, the number of non-dominated
solutions is increased by a factor of about six for RUE instances and by a factor
of about three for RDM instances.
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Figure 2: Location of differences between search strategies for an RUE (left)
and an RDM instance (right) of size 500. All differences are in favor of the
2phase strategy.

RUE RDM Mixed
size 2phase 2phase 2phaseE 2phaseR

100 0.0% 6.4% 0.0% 0.0%
300 4.1% 31.6% 5.2% 2.1%
500 10.1% 31.7% 15.8% 6.9%

Table 2: It gives the percentage of the pairwise comparisons in which the 2phase
search strategy (for mixed instances, 2phaseE and 2phaseR, respectively) was
better than the Restart strategy. In no comparison, Restart was found to be
better than 2phase (or 2phaseE and 2phaseR, respectively).

4.3.3 Component: Neighborhood Structure

The results based on the better relation indicated that using a 3-exchange
neighborhood results in significantly better performance than 2-exchange with
the advantage of 3-exchange over 2-exchange increasing strongly with instance
size; the advantage of 3-exchange is most evident for the RDM instances. Ta-
ble 3 gives a summary of the observed percentages of 3-exchange being better
than 2-exchange for the different instance sizes and the different instance types.
Given these strong differences, clearly also the null hypothesis with respect to
the equality of the EAFs was always rejected. The differences above 20% were
always in favour of 3-exchange and the differences were more pronounced for
larger instances (see right plot of Figure 3). Hence, this result is analogous
to the relative behavior between these neighborhoods in iterative improvement
algorithms for the single-objective TSP [39, 25, 19].
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Figure 3: Location of differences between using or not the component-wise step
in favor of the latter for an RUE instance of size 100 (left) and between the
2-exchange and the 3-exchange neighborhood in favor of the latter for an
RDM instance of size 500 (right).

Size RUE RDM Mixed
100 1.2% 50.3% 6.5%
300 43.0% 67.4% 22.3%
500 53.1% 75.0% 26.2%

Table 3: It gives the percentage of the pairwise comparisons in which
3-exchange is better than 2-exchange. In no comparison 2-exchange was
found to better than 3-exchange.

4.3.4 Component: Search length

As said before, the search length defines the number of iterations for a single
execution of the ILS algorithm, denoted by ILS(i). According to the use of
the better relation, we observed that ILS(50) and ILS(100) perform better than
ILS(0), that is, iterative improvement, and that the frequency of better per-
formance is higher for instances of size 300 and 500 than for those of size 100.
The relative performance seems similar across all types of instances, though less
emphasized for mixed instances. See Table 4 for more details. The results also
indicate that the comparisons between the outcomes obtained by ILS(50) and
ILS(100) are incomparable.

The statistical tests on the equality of the EAFs all clearly indicate the rejec-
tion of the null hypothesis for all instances. Thus, any increase of the number of
iterations from 50 to 100 results still in statistically significantly better perfor-
mance. However, the examination of the location of the differences above 20%
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Figure 4: Location of differences between iterative improvement and ILS(50) in
favor of the latter (left) and between ILS(50) and ILS(100) iterations in favor
of the latter (right) for an RDM instance of size 300.

RUE RDM Mixed
size 0 vs. 50 0 vs. 100 0 vs. 50 0 vs. 100 0 vs. 50 0 vs. 100
100 15.1% 20.4% 42.6% 54.9% 22.8% 26.6%
300 65.3% 80.0% 67.0% 77.7% 34.6% 52.8%
500 71.8% 79.9% 69.0% 74.1% 40.0% 49.7%

Table 4: It gives the percentage of the pairwise comparisons in which a search
length of 0 is worse than a search length of 50 and 100. In no comparison, a
search length of 0 was better than 50 or 100. The pairwise comparisons between
search lengths 50 and 100 resulted always in incomparable cases.

indicates that, for all the instances tested, the major leap in performance is given
by moving from ILS(0) to ILS(50), while moving from ILS(50) to ILS(100) yields
somewhat less pronounced but still significant differences. For an illustration of
this behavior, we refer to Figure 4.

4.3.5 Component: Number of Scalarizations

Differently from an increase of the search length, an increase of the number of
scalarizations does not correspond to an evidently better performance with re-
spect to the better relation; as can be seen in Table 5, some minor evidence for
improved performance is only found for large RDM and mixed instances. How-
ever, the null hypothesis of equality with respect to the EAFs is always rejected
for any instance, which means that an increase of the number of scalarizations
results in a significant effect. The location of differences above 20% indicates
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Figure 5: Location of differences between n and 5n scalarizations in favor of the
latter (left) and between 5n and 10n scalarizations in favor of the latter (right)
for a mixed instance of size 300.

RUE RDM Mixed
size n vs. 5n 5n vs. 10n n vs. 5n 5n vs. 10n n vs. 5n 5n vs. 10n
100 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
300 0.0% 0.0% 8.3% 11.9% 0.9% 7.3%
500 0.0% 0.0% 7.0% 10.5% 1.1% 7.6%

Table 5: It gives the percentage of the pairwise comparisons in which a number
of scalarizations j is better than a number of scalarizations i (indicated by i vs.
j). In no comparison, a number of scalarizations i < j was better than j.

that the performance differences are not very pronounced. While the differences
between n against 5n scalarizations are still rather clearly visible, as shown in
Figure 5 on the left plot, the differences between 5n and 10n scalarizations are
almost imperceptible (see right plot).

4.4 Summary

The main insights from the extensive experimental design analysis for the SAC
search model applied to the MTSP are the following. A substantial gain in
solution quality can be obtained by choosing an underlying high performing
SLS algorithm. Two ways of improving the performance of the underlying SLS
algorithm have been studied: the underlying neighborhood (solution quality is
known to improve considerably already for the single objective case when moving
from 2-exchange to 3-exchange neighborhood in an iterative improvement
algorithm) and the search length, here defined by the number of iterations of
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the underlying ILS algorithm. In fact, these insights would suggest that a further
improvement of the performance might be expected when moving to effective
implementations of the Lin-Kernighan algorithms as provided by Helsgaun [18]
or the concorde library [3]. (This is the case because for the single-objective
TSP, the Lin-Kernighan algorithm is known to reach better quality solutions
when comparing iterative improvement algorithms; in fact, this same ranking
transfers to the case once the iterative improvement algorithms are included
into an ILS algorithm [25, 26, 19].)

The component-wise step was also shown to have a significant impact on
the final solution quality, as we observed on all instances studied. In addition,
the computational overhead caused by its introduction seems to be minor at
least in the biobjective case studied here: on average it leads to an increase
of the computation time by approximately one percent. Hence, concerning
computation time the impact of adding that component-wise step is much less
than when moving from the 2-exchange to 3-exchange neighborhood, which
actually increases the computation time significantly.

Concerning the choice of the search strategy, there is a clear interaction be-
tween the search strategy and the type of instance. For small RUE instances
with 100 cities, the Restart strategy has slight advantages over 2phase. How-
ever, for larger mixed and Euclidean instances, and for all RDM instances tested,
the 2phase strategy is clearly preferable, often by a large margin. In fact, the
experimental analysis of the SAC search model indicated that instance features
play a strong role in the performance of the algorithms under study; it is there-
fore expected that those features are also relevant in the performance of many
other SLS algorithms as well.

The impact of the number of scalarizations seems to have the smallest im-
pact, at least when judging from the better relations. In the plots of the differ-
ences, the step from n to 5n scalarizations was most noticeable, while further
increasing it to 10n gave no further strong advantages.

5 Comparison with a State-of-the-Art Algorithm

The insights gained from an extensive study of a class of algorithms through
experimental designs may, beyond the scientific insights gained, also be useful
to define new high-performing algorithms. Here, we show that, indeed, this
step can effectively be done by defining such algorithms and then comparing
them to a multiobjective memetic algorithm called MOGLS. This algorithm
was proposed by Jaszkiewicz [23], who kindly provided us the source code of
this algorithm, and in earlier studies it was shown to outperform other SLS
algorithms for the MTSP for two and three objectives [23]: the algorithms to
which MOGLS was compared include MOGA [10], MOSA [46], and Ishibushi
and Murata’s Memetic Algorithm [22].

MOGLS works as follows. It initializes two archives CS and A with l solu-
tions obtained from runs of an iterative improvement algorithm based on the
2-exchange neighborhood with respect to a weighted sum scalarization with
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randomly generated weights. Then, it iterates r times over the following two
steps. First, it chooses two among the best m solutions in A with respect to
a weighted sum based on randomly generated weights; these two solutions are
then recombined by the distance-preserving crossover [12]. Next, it applies a dif-
ferent iterative improvement algorithm based on the 2-exchange neighborhood
to the new recombined solution using the same weighted sum scalarization; the
resulting local optimum s∗ is added to archive CS if it is better than the worst
solution among the m best solutions according to the weight vector considered;
finally s∗ is added to archive A, if no solution dominates it and the archive
A is updated. The performance of this approach depends on parameters m, l
and r. These two steps (recombination and local improvement) are repeated
for r · l iterations, thus generating a total of (r + 1) · l local optima between the
initialization and the following iterations.

For our experiments, we follow the parameter settings proposed in [23] as
far as possible: we set m = 16, the number of iterations r = 50, which was the
maximum value tested earlier; for l, we used the value 142 for instances of size
100 with two objectives, but for instances of size 300 we extrapolate it linearly,
which resulted in l = 278.

The configurations of our SLS algorithms were chosen according to the main
insights from the experimental design. The only exception is that we use only
local search based on the 2-exchange neighborhood, since also MOGLS uses a
local search in the 2-exchange neighborhood and using the 3-exchange neigh-
borhood would clearly bias the results in our favor. For the comparison, we
tested the two approaches on the RUE and RDM instances with 100 and 300
cities. We used the following configurations: All SLS algorithms use (i) the
component-wise step, (ii) 100 iterations of the ILS algorithm, (iii) 10n scalar-
izations, and (iv) the 2-exchange neighborhood. Regarding the search strategy,
we use always the 2phase strategy, with the only exception being the RUE in-
stances with 100 cities: for these instances, our experimental analysis indicated
slightly better performance with the Restart strategy and, hence, we follow
our conclusions of the experimental analysis. Each of the algorithms was run
10 times on a single CPU of a computer with two AMD Athlon(TM) 1.20 GHz
CPUs with 512 MB of RAM running under Suse Linux 7.3. For measuring
the computational effort spent by the algorithms, we use the number of times
a neighboring solution is evaluated (recombinations in case of MOGLS, and
perturbations in the ILS were not counted). This was done, because the imple-
mentations were not done using the same programming languages and the very
same data structures and, hence, measuring CPU time would have been unfair.
(We verified that our code was actually much faster concerning CPU time than
MOGLS and, hence, in this way we also avoid the bias in favor of our code that
would occur if we stop both algorithms at a same CPU time.)

Given that most of the outcomes returned by the two algorithms were in-
comparable in some preliminary experiments, we decided to directly apply the
statistical tests at the 5% significance level for checking the null hypothesis of
equality between attainment functions: for all experiments, the null hypothesis
was always rejected. The location of the differences above 20% showed a clear
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better performance of our SLS algorithms over MOGLS, except in the RUE in-
stance with 100 cities and two objectives.6 On this instance, the differences were
rather small, except towards the improvement of the second objective where our
configuration performs better (see Figure 6). The plots show that the differ-
ences are larger and more spread in favor of our SLS algorithm, though we can
notice that there are still regions of the objective space where MOGLS performs
slightly better. However, for all RDM instances, and for all RUE instances with
300 cities, we found only differences in favor of our approach. (For an example,
see Figure 7.)

Figure 6: Location of differences between MOGLS and our SLS algorithms in
favor of MOGLS (left) and in favor of ours (right) for an RUE instance with 100
cities. The differences are not very marked, but slightly more strongly in favor
of our algorithm. Note that, in order to improve visibility, the gap between the
worst case and lower bound was removed since it was too tight.

Given the high performance advantage of our SLS algorithms, we decided
to run some experiments comparing the SLS algorithms to MOGLS for MTSP
instances with three objectives. Since the experimental study was done only
for the two objectives case, we first performed some exploratory experiments
concerning the configuration of the SLS algorithms. Based on these, we decided
to increase strongly the number of scalarizations to 5 151 scalarizations (that is,
z = 100), for all instance sizes. We did not apply the component-wise step for
three objectives; the main reason was that the component-wise step for more
than two objectives has the drawback of returning many clusters of solutions in
the objective space. We therefore, compensate the lack of component-wise step
by the increase on the number of scalarizations. All other components remained
the same (that is, the Restart search strategy is applied to RUE instances of
100 cities, while 2phase is applied for all other cases). For MOGLS, we increased

6The complete EAF plots are available online at http://eden.dei.uc.pt/∼paquete/mtsp.
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Figure 7: Location of differences between MOGLS and our SLS algorithms in
favor of the latter on an RUE (left) and an RDM instance (right) with 300 cities.
No differences in favor of MOGLS have been observed. Note that, in order to
improve visibility, the gap between the worst case and lower bound was removed
since it was too tight.

the values of the parameter l, the initial size of the archive, to 662 for instances
with 100 cities, as suggested in [23], and to 1 786 for instances of size 300 by
linear extrapolation.

For the instances with three objectives, we did not apply the statistical test
because of the very large number of points (more than one million) that were
required to define the EAFs, which anyway took already about one week for
each experiment. However, the maximum absolute difference of one between
the EAFs was always detected and, hence, we suspect that the null hypothesis
of equal EAFs would anyway be rejected. (Recall that the statistical test is
based on the maximum difference between EAFs associated to two different
algorithms.) Instead, we used the parallel coordinates graphical technique [21],
where each line corresponds to one point in the objective space for detecting the
location of the differences. Examples of the resulting plots are given in Figure
8, where points with differences in the range of (0.8, 1.0] are plotted on top and
points in the range of (0.6, 0.8] are plotted on bottom in favor of MOGLS (left
side) and in favor of our SLS algorithms (right side). Since, for each plot a line
is drawn, the much darker plots on the right side indicate a strong advantage of
our SLS algorithms over MOGLS. In fact, when counting the number of points,
for the RUE instance with 100 cities, there are 669 points in favor of MOGLS
against 16 484 in favor of our approach in the range of (0.8, 1.0] and 8,938 in
favor of MOGLS against 200 618 in favor of ours in the range of (0.6, 0.8]. For
the RDM instance of size 100, no differences above 60% were found in favor of
MOGLS, and only one point was found whose difference was above 40%. Finally,
for the RDM instance of size 300 only differences in favour of our approach were
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found.

Figure 8: Location of differences between MOGLS and our SLS algorithm on
an Euclidean instance of size 100 with three objectives in favor of the former
(left) and in favor of the latter (right) in the range (0.8, 1.0] (top) and (0.6, 0.8]
(bottom). See the text for more details.

Table 5 presents the average number and standard deviation of evaluations
performed by our approach and by MOGLS for each instance. It is possible
to observe that our approach performs much less evaluations than MOGLS.
Therefore, these results indicate that our approach is highly competitive, both
in terms of solution quality and time.
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Type Objectives Size Our approach MOGLS
RUE 2 100 0.04 · 109 ± 0.03 · 106 0.10 · 109 ± 3.96 · 106

300 0.75 · 109 ± 1.29 · 106 8.00 · 109 ± 0.85 · 109

3 100 0.41 · 109 ± 0.21 · 106 0.69 · 109 ± 31.13 · 106

300 0.75 · 109 ± 3.52 · 106 80.91 · 109 ± 1.36 · 109

RDM 2 100 0.07 · 109 ± 0.26 · 106 0.45 · 109 ± 25.33 · 106

300 0.85 · 109 ± 3.19 · 106 57.66 · 109 ± 2.00 · 109

3 100 0.40 · 109 ± 0.26 · 106 1.93 · 109 ± 60.92 · 106

300 1.39 · 109 ± 7.31 · 106 287.21 · 109 ± 5.63 · 109

Table 6: The average number and standard deviation of evaluations performed
by our approach and by MOGLS for each instance.

6 Discussion and Conclusions

The main goal of this paper is to make a step towards the understanding of the
working mechanisms of SLS algorithms applied to the multiobjective combi-
natorial optimization problems from a component-based point of view. In fact,
SLS algorithms are usually assembled from several components that can, or not,
be instantiated for tackling a problem at hand. Hence, immediate questions for
an algorithm designer are: how relevant are these components for the overall
algorithm performance? Is there an component that can be removed in order
to reduce the fine-tuning effort?

In this article, we focused on SLS algorithms for MCOPs that follow a gen-
eral algorithmic template, the so-called Scalarized Acceptance Criterion model
using their example application to the biobjective TSP. We studied the impor-
tance of their components by means of a systematic experimental design, whose
results were analyzed with an sound methodology for the evaluation of the out-
comes of SLS algorithms for multiobjective problems. In fact, very few studies
have addressed the systematic analysis of the algorithmic components of SLS
algorithms for MCOPs in a rigorous manner.

Our analysis gave clear hints on the effectiveness of each algorithmic com-
ponent for the MTSP. First, strong intensification for each scalarized prob-
lem provides better performance, as shown by the results on the components
neighborhood structure and search length. This gives a clear indication that
further improvements could be obtained by using iterative improvement algo-
rithms based on more advanced neighborhood structures such as used by the
Lin-Kerninghan heuristic [29] and its iterated versions [3, 18, 25]. In fact, initial
results by other researchers [24, 32] indicate that this conjecture may be true.
The component-wise step is always recommendable, at least, for two objectives.
For more objectives, it may, however, induce an undesirable clustering, which
may be circumvented by using more scalarizations; nevertheless, more research
in this direction is certainly necessary to give a more detailed answer. Finally,
the 2phase strategy seems to be a better option than Restart. This fact is cer-
tainly connected to the recent results on the closeness of approximate solutions
for this problem [37].
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As a proof-of-concept, the insights we gained from this analysis were used to
assemble SLS algorithms for the MTSP. Despite their simplicity, they showed to
be highly competitive with other well-established algorithms for this problem.

There are a number of possibilities for further investigations. More experi-
mental research for this and other MCOPs is certainly required to further in-
crease the understanding of the importance of algorithmic components of SLS
algorithms. One methodological aspect that should be treated to explore other
measures for comparing the efficient sets returned by the SLS algorithms such
as the hypervolume indicator, the R measure, and the ε-indicator. Such mea-
sures would certainly speed-up computations in the analysis of the experimental
results; at the same time the may incur some loss of relevant information, which
is avoided by our methodology. Another direction is to analyze the importance
of the algorithmic components in dependence of search space characteristics of
the MCOPs and the connectedness of the solutions in the efficient set.

Ultimately, we hope that systematic experimental designs and their rigor-
ous analysis will help to make the development of effective SLS algorithms for
MCOPs less an art but more a well-established algorithm engineering process.

References

[1] E. Angel, E. Bampis, and L. Gourvés. Approximating the Pareto curve
with local search for the bicriteria TSP(1,2) problem. Theoretical Computer
Science, 310:135–146, 2004.

[2] E. Angel, E. Bampis, and L. Gourvés. A dynasearch neighborhood for
the bicriteria traveling salesman problem. In X. Gandibleux, M. Sevaux,
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[45] T. Stützle and H. H. Hoos. Analysing the run-time behaviour of iter-
ated local search for the travelling salesman problem. In P. Hansen and
C. Ribeiro, editors, Essays and Surveys on Metaheuristics, Operations Re-
search/Computer Science Interfaces Series, pages 589–611. Kluwer Aca-
demic Publishers, Boston, MA, 2001.

[46] E. L. Ulungu. Optimisation combinatoire multicritére: Détermination de
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